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A nonlinear difference-differential encounter-evasion game with a functional
target is analyzed under integral constraints on the players* controls and func-
tional constraints on segments of the controlled trajectories, Similarly to [1-3]
a position procedure of control with a guide is constructed, solving the en-
counter and evasion problems, The existence of a saddle point in the game
being analyzedis studied. The paper is closely related to the researchin[1-91].

1, The following controlled system is specified:
@) =1z @)+ Fi(t, 2 u+Falty @) vy t<i<d (D
Here x isthe » ~dimensjonal phase vector; u and v are the controls of the first
and second players; the vector functional f (£, xz (s)) and the matrix functionals

F;(t, z(s)), i =1, 2, are determined on the set [t,, #] x H,, where Ho is
the Hilbert space of n -dimensional functions x (s) with the norm

() o = (12O -l-_S | z(s)|* sy’

and “Z“ = (Z12+... +zn2)l/2s ZEEn

fit,z () =F¢ z (=) -0 2(—Tm) ¢ (( 2 ()

where @ (¢, = (5)) isa functional continuous on  [t,, 9] , with valuesin E,,
satisfying (uniformly with respectto ¢t & [t,, 0] ) a Lipschitz condition in z (s)
on each bounded set D C H,, i.e.,
oz () —@ () | L |21 (8) =25 (9) flo
L=LD), =z(s\eD, j=1,2
The functions f (¢, 2;,. . ., 2m, 2) and F; (¢, z),i = 1,2 , are continuous in
all the arguments and satisfy a Lipschitz condition in (21,- + o Zm, 2) and z,
respectively, The growth conditions

1F & 26N <T@+ L®lz) o + El n; (@) |z (=)
N Fi (2, 2 (8) | << Qive (8) + %5 [} 2 (8) o
where C; (f) and m; (f) are nonnegative square-summable functions and ®; =

const > 0  are satisfied for any z (s) = H,, . The control realizations u [¢]
and v [t] are subject to the constraints
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Cruinpa) < (§rempa)” < i (L.2)

to to

The changes in constraints A [t] and w [t] are determined by the equalities

t 1/,
Mt] =A[t] — (S Ju (2] Ilzd")/

|31

[

vital = v ) — (§ o 121 )"
111
Let {u (-); to, O; A [20]} and {v (+); to, O3 v [¢,]} be summable functions
on [¢,, ¢], satisfying (1,2). The constraints on the right-hand side of system (1.1)
guarantee the existence and continuability on [t,, #] of the solution of the Cauchy
problem in the sense of Carathéodory for any initial ¢, & [¢,, 8] and 2z (s) = H,
and for any functions u () & {u (-); o, 5 A [2,]} and v () & {v (+); £, 9; v [t]}.
The unexplained concepts and notation below are contained in [9].
An element i, () & H,, and the nonempty closed sets N C [t,, 9] x H, and
MClty— o+, ] x Hi(u = const >0, ¢ = max X

[o, pl) are specified, The encounter problem is to choose a feedback control ¥ en-
suring that the phase trajectory's segment x [t 4 s; u] falls into M (¢) during the
interval [f, — @ 4 1, 8], leaving the segment = [t 4 s; ® | inside N (¢) for all

t = [t,, O] . It is assumed that the first player can meet with any method of forming
the control v developing measurable realizations v [¢] satisfying (1.2). the evasion
problem is to choose a feedback control U ensuring that the segment z [t + s; pl
of phase trajectory  [¢] evades M (), leaving z [t + s; @] inside N (2) for all

t = [ty, 8] , orleading z [t 4 s; @] outof N () (2, < t < ©) before z [t +

s; p] fallsinto M (2) (to — @ + © < t <C ¥9). Itis assumedaswell that the second
player, in his own tumn, can meet with any method of forming the control u developing
measurable on [¢,, ®] realizations u [t] satisfying (1.2). Encounter and evasion
games for conflict-controlled systems described by functional-differential equations un-
der instantaneous constraints on the controls were analyzed in [3-5,9]. The main dif-
ference between the present paper and those investigations is that here we study the case
of integral constraints on the controls (see [2, 6-8 ],

2, We describe a procedure solving the encounter and evasion problems, The
quadruple py, = {ty, Ay, V4, Z, (s; T)} is called the game's position, R is the
space of positions, R = E; X E; x H. and p (t,) = {Ay, v,, 2, (5; )}
The symbol 0: (pr,, v (+)), v (t) & {v (-); i,, oo; v, )}, denotes the set of elements
P = {t, A(t), v (1), z (t + s; 1)} of the form

B>t>1,, MO =A2—T2E 1) V() = v — Tt 1)
2(t) = 2, 0 1)+ § [ E 2 )+ Fr(E 2 () u® +

t

Fa (8 z: (s))v(E)l dE

*
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(Julten vy = (§ le@Pa) . Joon=(Svera))

te

u (f) are all possible summable functions satisfying the inequality J, (£, o) <(A,.
Let D be some set from R. We denote

D@y, ) ={pp={t, by v, z(s; D}y & D | t, <t <t*}

D (&) = {{M v, 2 (s D} | {tss X, v, 2 (s; ©)} = D}

Ds = {{t,\,v, z (5 8)}[{t, M, v, 2(s;1)} & D, 2 (0; 8) = z (0; 1)

z(s; 8) =z (s; 7) foralmostall s [—8, 01} (6 [0, <l
= {{tv A, v, x(S; }")} [{tv‘z(S; H)}EEM, A>0, 'V>0}3
={{t, b, v, z(s; @)} |{t, z(5; @)} =N, A >0, v > 0}

The sets W™ (2) C R®, ¢, <t <9, and W.,™ () C N* (t) are said to be
u ~stable if W™ (9) C M* (§) or W) (§) = (¢ and for any ¢, = [t,, ),
e (e B, p @) =y, vy 2 (5 D} E WO g)ad v e (v (-);
te, 005 v,} either o: (%5 pu, v () 1 W® (%) 5= ¥ orap (py,, v (+)) N
M* (t,, t*) 7= . Here 0. (t*; p;,, v (-))isthesectionofset o, (p;,, v (+)) bythe
hyperplane ¢ = t*
We introduce u, (p,,, pt., 8)and v* (p,,, p¥, 8) (6 > 0) as the functions on which,
respectively, 1,48 148
111‘](11,1{ S b'u (t)dt| S ]lu(t)||3dt<?»2—-7»*2} for A > A%, b£0
‘+8

max{ | comat| S Ip@®1Pdt<v* — v} for >, oo

are achieved, Here
P ={to M v, z(ss 0}, P = {te, M, v¥, 2* (5; 1)}
b = (z (0; 1) — z* (0; 1)) Fy (84, x (53 T))
¢ = (z (0; ©) — z* (0; 1))’ Fa(ty, z (55 7))
(the prime denotes transposition ), If A <{A* or b =0 (v* v or ¢ =0),

we assume
Uy (Pt .Y 8) = 0 (@* (P1, pt.*’ 8)=0)

Let us define a procedure for the first player's control with the guide for specified
initial position Py, = {to, A [fo], v [te], 2o (s; ¥)} and wu -stable sets W (7),
Lo << LB, WO (4) 5= ¢ . We take the element p* [1,] = {A* v*, 2% (s;
1)}E W) (t,)closestto  p [t,] (for simplicity we assume that such an element
exists; the general case is investigated by passing toa minimizing sequence as was done
in[4,51). Let A bea coveringof interval [Zy, ®] bya system of half-open intervails

[Th THI) (" = 01 11 LIRS ] Z(A))

To = Ly, T; =V, Tj;— 7; = & = const
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We assume that in [1,, T,) the motion of system (1,1) is generated by the constant con-
trol u©® [t] = uy (Pry Pre*, 8) (Tp << t << Ty) in pair with some realization v [t] &=
{v (+); ty, 00; v [£]}). We then determine the position p=, = {7y, A lt;], v [1],
z [1, + s; t]} atinstant T, . Weselectthe guide's position P+,* from the condition

p* [u] e W™ (1) N 02 (115 pa*, vO[-])

(v(o) [tJ = v* (pim pio*v 6)1 To < t < Tl)

assuming that this intersection is not empty. We define the first player's control on

[1;, T9) by the relation u® [{] = u, (p<,, po,*, 6) (1,<C ¢ < 1p). The position
p-, is realized as a result of the choice of control u() [t] and of some control
v [t] . We define the guide's position at instant ¢ == T, from the condition

p* [ta] € W™ (T5) ) 0c (a3 pe*, v0[])
(U(l) [t] = v* (pw:n pn*1 ‘S)a Ty < t < Tz)
assuming once again that this intersection is not empty, If

wt (Tirn) 1 02 (Tisas p~.i*, v [ N#= for all i=0,...,1—1

we effect this procedure up to the instant ¢ = 9.
Let T; be the instant when first

W (1)) () 02 (153 pes_p WO ]) = &

Then M* (t;-y, 1)V ou(p¥,_,, v0~D [-1) # (J. Hence an instant  Tx & [t5-1 75l
exists when the guide's position p:,*= {t,, Ay, vy, z [z » + §; t]} canbedetermined
from the conditions

pF e, (pfj—r v [.])
{Ags vy, z [ty + 57 pl} = M(zy)

Atinstant { == T; we take an arbitrary element from T; X 0: (T;; pe,*, V2 [ ])
as the guide's position  Pe;* . Further, we define the controls u( [¢] and v® [2]
(v: < ¢ << 144y, ] <<i<< I — 1) by the relations

u® [£] = uy (P=,» pe,*, 8), v [t] = v* (Pzpy Po;*: 0)
and we choose the guide's position arbitrarily from the sets Tirg X O (Tieqs p1i*,

v® [.]). The motion constructed of system (1,1) is denoted

x5 [t] = z [t; pro, us, V]

us (1] = u® [t], 7, <<t<< Tisq, i=0...,1—1
Function z [1], %, S/ <ﬁ » is called a motion of system (1, 1) if there exists a se~
quence of functions Za, [t] = z [t; p, us, s vy] satisfying the conditions

za, [t1—z[t] in C([to, ¥]) (2.1)
(Visy (B) — T:(K))— 0
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k)
pgo — P as k— oo
k k k
Pl = {to, MY, ¥§F, 2P (s; ©)}

It can be shown that this motion (we denote it Z [¢; py,, W] ) exists. Without loss
of generality we assume M () = (.

Lemma 2,1, If u -stable sets W) (1), 1o << ¢ < @, exist such that p [#,]
& W) (t,) and Wyt (8) CC M* (), then for any motion z [t] = z [t; p,,, WW)]
we can find an instant {, & [¢{, — o 4 7, O] when fisst {t,, z [t, + s; pl} = M,
and {t, z [t + s; 0]} eN for tE[to,t 1.

We present the lemma's proof, Let A, be a covering of interval [z, %] by the
intervals T; (k) < t <7, (k), i=0 wilp ToRY=1ty, Ty =0, I = 1 (Ag); let

Tay {tl = Za, [t pIALIN Ug s vg] be the phase vector of system (1,1) realized at in-

stant 4 let :cAk [¢] be the phase vector of the guide, whose motion was  formed
jointly with motion ~ z,, [t} let uy * L4l be the first player's control whose action
realizes motion IAk* [t].

It can be verified that the equality

- "i:.((i—{‘gl)tll(p(t)udt) —o, ¢= -—to (2.2)
mee f= it

is valid for any n -dimensional vector function ¢ (¢) & L? [%, 8] . Proceeding from
the method of forming motions 4 [} and < a,” [t using (2,2) we establish the
relation
lim max {fry ;b i=0, ..., ) =0 (2.3)
k—+oo {1 N

Here
i =lza, It () +5: ﬂ_xg [r; (k) + s 11, +

b S g, [ () + 5t 11— 2% 5, () + : <] s +

= 1—t;
A0
2(zy, I7; (W] — 23 lv, (k)Y Fy (&, 2} s1) uy,
a LT a, T (0D 1(& 2y (& 5] )ug, (g)aE —
5 (F)
(k) '
Fy(E, zAkI[F’ + s1) v, [€] dE
T3y (k)
The lemma's validity follows from (2.3).
Let @* = {p, = {t, A v,z (0} {E (s D} O, A>0, v> 0}
V¢= {py = {t, , v,z (0} | {t, z (85 )} = ¥, A >0, v> 0}

where @ and ¥ are closed sets in E; X H., satisfying the conditions (¢ > 0)
D (M =@, YN N=0

Thesets W® (1) C RW, ¢, <t <O, WO (1) C ®* (t),aresaidtobe v-

stable if for any ly &= [to’ 9), t*= (4 ﬁ],p (t*) = {7\«*,'\’*,.‘8* (3; T)}E w® (t4)
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and u (t) = {u (+); by, %0; A,} either 0:(t*; pr, u ()1 WO (t*) =
or Oc (pra, () ) W* (2, %) % .

We introduce u* (p,,, p, *, 8) and vy (py,, py,*, 8) as the functions on which,
respectively,

e+ fy+d
max{ § bu()at| S @) [Pt <M — A%} for ax>4, b0
u(-) © g,
L ot R
mm{‘\ v (t) dt | 5 To@)Pdt <<y —v*) for v>v¥, c0
()

are achleved ¥ A>A* oo b=0(*>nv or ¢=0), then we assume
u* (pr,, Pu*:8) = 0 (v, (py,, Pr,*, 0) = 0).
Let us define a procedure for the second player's control with the guide for v -stable
sets WO (1), 1, <t <& . We form the second player's control as follows:
D [£] = Vy (Pepr Pe,*, 8) (LKt L Ty, =0,y L—1)

*

Here Ps; is the game's position and p.,;" is the guide's position realized at instant

{ = 1;. The controls
HB* {t} = u* (p'tia P«:i*a 6) == u(i) {t}’ T; § t < Tist

are used to determine the guide's positions, As the guide’s initial position p;,* we
select the element of set 1, X W) (f;) closest to p;, (once again we assume the
existence of such an element), Next, we determine the positions p:i* successively
from the condjtion

p* vl o (1 py_, uSV L) N W (1)

either up to the instant 1; = O if all these intersections are nonempty or up to the
instant T; for which this intersection first is empty, The position Psy * af instant T;
is determined from the condition

prITl € 0. (15 pu*, D[ ])
where p* [t ] & o= (14 pfj_,x, w=b [N ) ¥* (1,), Tj-1< T4 < 7;. The existence
of such an element p.* follows from the inclusion p* [qu] = W® (t;.,) and
from the definition of v -stability of sets W) (2). Next, as P+* (j<Ti<( )
we choose arbitrary elements from the sets T; X 0z (T pf;_, ™ [-]).

By za [t] = z [1; py,, u, vs] we denote the motion of system (1.1), realized by
the second -player’s control vs [t], £, < 2 < ¥, in pair with some control  u[t] &
{uw(-); 2, 00; Mt} . By z{t; p,, W®]  we denote the function z [1],

1o << ¢ < O generated by the sequence of motions za, [t] = z [¢; p{®), uy, vs,l
satisfying (2,1),
Analogously to Lemma 2,1 we can prove
Lemma 2,2, If v -stablesets W (f), ¢, <C t<{ ¢ existsuch that plz,]
& W) (t,), then for any motion z [t] =z [t; p;,, W®)] the element {¢,z [t +-
s; t]} remains in domain @ uptoinstant O orup to the instant T, when
first {14, x M1y + 551l = V.
Let W, ® (2), ¢, <C t < &, be a maximal v -stable system of sets.
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We denote W, ™ (f) = R\ W, ® (1),

Theorem 2,1, Forany initial gameposition p;, seither P [to] & W, (1,)
and then the encounter problem has a solution which is provided bya procedure of con-
trol with a guide defined for u -stable sets W, (1), t,<( 1< ¥, or p [4] &

W™ (2), and then the evasion problem has a solution, it being that p [f] &
W (t,), where W® (2}, t, < t <8, are certain v -stable sets, and this solution
is provided by a procedure of control with a guide, defined for the sets W (1),
<<t B

The theorem can be proved along the plan of the proof of Theorem 3.3 in [2].

3, Letus assume that N = [¢,, 8] X H,, and that the first player measures the
phase states of system (1,1) inaccurately, Thatis, at the instant ¢ he knows the
quantity w [t -4 s; 1] connected with the realization z [¢ + s; 1] by the relation

fwit+stl—zlt+s 71 <<a, 6, <1< P, a=const>0

We define the motion z, [¢; pi,, W] similarly to motion z [¢; p;,, W], The
difference is that we equate the controls u [1] and v [¢] when t & [14, Ti4y)

u® [t] = u, (B, pep 8), v [t] = v* (5, pF,, 6)

pi(o) = {33 A {tL v [in w [t + 8, T]}

Lemma 8,1, Letclosed Uu~stablesets W (1) C RM, 1, < ¢t <9,
exist such that p [,] & W® (¢,) and Wp (8) C M* (). Then, for any number
& > 0 there exists a number o > 0 such that for any motion o [£; py, W®] we
can find an instant ¢, & [ty — © - T, ¥lwhen fist {t,, z [1, + s; ul} = M-
The lemma's proof is analogous to that of Lemma 2,1,
We note that when N = [t,, 8] X H, the condition

O {pt*v u ()) ﬂ k% (t*f t*) 7 @
should be dropped in the definition of the v -stability of sets W) (1), 1, < ¢ < 9.
If at instant ¢ the second player also knows the quantity w [t + s; 1], then we can
define motion iz, [Z; py,, W®)] similarly to motion z [¢; p,,, W®] by setting
ug* [t] = u* (00, pe,*, ) us [t] = v, (B, pe*, 8)
for t & [15, Tisg)
Then there holds ‘
Lemma 3,2, Let v -stablesets W® (2), 1, < 1 < ¥, and p [t,] & WO
(to) be specified. Numbers & >> 0 and c > O exist such that the condition

B +s; plegEM @), th—o+1<t(D
is specified for the motions z, [¢; p, W™l if a < a, .

Suppose that by choosing a control u [t] the first player strives to minimize tne
value of some continuous functional ¢ (x (s; p)) at the instant @ , while choosing
a control v [{] the second player strives to maximize at instant ¢ the value of

@ (z (s; p)) on the trajectories of system (1,1). The functional @ (x (s; ) is
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defined on space Hy.
Relying on Theorem 2,1, just as in [1] (see Sect, 18,97) we can validate
Theorem 3,1, Forany initial position p;, a number ¢y, y -stable sefs
W (1), 1, <<t <C ¥, and v -stable sets W® (1), 7, <. t < § exist such
that the relation

Q@8+ 8 po WOD< o< @204 55 pro, W)

holds,
The author thanks Iu, S, Osipov for posing the problem and for valuable advice.
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