
1. The following controlled system is specified: 

UDC 62-50 

ON THE EXISTENCE OP A SADDLE F’CINT Dl A 
DIFFERENCE-DIPPERENTIAL PNCCUNTER-EVASICN GAME 

PMM Vol. 42, & 1, 1978, pp. 15 -22 
V. I. MAKSIMOV 

( Sverdlovsk ) 
( Received may lo,1977 ) 

A nonlinear difference-differential enccunter-evasion game with a functional 
target is analyzed under integral constraints on the players’ controls and func- 
tional constraints on segments of the controlled trajectories. Similarly to Cl-3 1 
a position procedure of control with a guide is constructed, solving the en - 

counter and evasion problems. The existence of a saddle point in the game 
being analyzed is studied. The paper is closely related to the research in Cl-9 1. 

x* (t) = f (t, x1 (s)) + Fl (t, q (s)) u + Fs (4 44) v, to< t d 6 (l* l) 

Here X is the ?& -dimensional phase vector ; U and u are the controls of the first 
and second players: the vector functional f (t, z (s)) and the matrix functionals 
Fi (t, z (s)), i = d,? 2 , are determined on the set [to, fil x H,,,, where Ha is 

the Hilbert space of n -dimensional functions x (s) with the norm 

II 2 (4 lb = (II 5 (0) II2 + j II z (4 II” W’* 

and 

-0 

11 z 11 = (z12 + . . . + z,,~)‘/~, z E E, 

f (t, z (a)) = f (t, x (- zr),. * *, 2 (- ?n), cp (k 3 (4)) 

where cp (t, X (s)) is a functional continuous on [to, 61 * with values in E,, 
satisfying (uniformly with respect to t E [to, 61 ) a Lipschitz condition in z (s) 
on each bounded set D c H,,,, i.e. , 

II cp @v 51 (s)) - cp et Xa (4) II \< L I/ Xl (4 - 5‘2 (4 Ito 

L = L (D), x1 (s) ED, i = 2,2 

The functions f (t, zl,. . ., z,, z) and Fi (t, z), i = 1.2 , are continuous in 
all the arguments and satisfy a Lipschitz condition in (21,. ’ ‘, Gn, 4 and 
respectively. The growth conditions 

II f (tl z (a)) II < 51 (Q + c-2 (4 II 5 (4 lb + il rlj (0 II 22 (-- %I II 

II Fi (t, z (S)) II < L+z (t) + Xi II 2 (S) IL 

wf*=Jst E b”’ and ‘It (4 are nonnegative square-summable functions and 
are satisfied for any x (s) E H, . The control realizations u 

and u [t] are subject to the constraints 

13 

Xi = 

it1 
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(1.2) 

The changes in constraints 3L [tl and v [t] are determined by the equalities 

a Its] = ?b [tl] - (‘s 11 u [t] l/2dt)1’* 
fl 

v Its] = v [tl] - (i 11 v [t] /pq* 
t1 

Let {U (.); to, 6; h [to]} and {v (m); to, 6; v [to]} be summable functions 

on Ito, Sl , satisfying (1.2 > . The constraints on the right-hand side of system (1.1) 
guarantee the existence and continuability on [to, fil of the solution of the Cauchy 
problem in the sense of CarathCodory for any initial t, E [to, S] and 2 (s) E H, 

and for any functions u (t) E {u (a); to,+; h it,]} and v (t) E {v (-); to, 6; v [to]}. 
The unexplained concepts and notation below are contained in 19 I. 

An element x0 (s) E H, and the nonempty closed sets N C [to, Sl x H, and 

Mc[&, - o + a, 6 1 x Hg (p = const > 0, T = max X 
[a, ~1) are specified. The encounter problem is to choose a feedback control U en- 

suring that the phase trajectory’s segment z [t -/- s; ~1 falls into M (t) during the 
interval [to - o + ‘6, Sl, leaving the segment 5 [t -I- S; o 1 inside iV (t) for all 

t E [to, Sl . It is assumed that the first player can meet with any method of forming 
the control u developing measurable realizations v [t] satisfying (1.2 1. the evasion 
problem is to choose a feedback control v ensuring that the segment X [t + s; pl 
of phase trajectory x It1 evades M (t), leaving x [t + s; 01 inside N (t) for all 

t E [to, Sl s or leading x [t + s; 01 out ofiV (t) (to < t < 6) before x [t + 
S; p,] falls into M (t) (to - u -I- z < t < 6). It is assumedas wellthat the second 

player, in his own turn, can meet with any method of forming the control u developing 

measurable on [to, 61 realizations u [tl satisfying (1.2). Encounter and evasion 
games for conflict-controlled systems described by functional-differential equations un- 

der instantaneous constraints on the controls were analyzed in [3-5,9 I. The main dif- 
ference between the present paper and those investigations is that here we study the case 
of integral constraints on the controls (see [2, 6-8 1, 

2, We describe a procedure solving the encounter and evasion problems. The 

quadruple it, - it*, A,, v*, Z* (s; t)} is called the game’s position, R is the 
space of positions, I?(‘) = El x El x H, and p (t*) = {a*, v*, Z* (s; z)). 
The symbol o, (pt,, v (a)), u (t) E {v (-); t,, 00; v,} , denotes the set of elements 

pt = {t, h (t), v (t), x (t + S; z)} of the form 

6 > t > t,, h2 (t) = I$ - J,” (t*, t), y2 (t) = vz,c2 - Jv2Vw t) 

5 (t) = x* (0; z) + s if (E , xc (s)) + FI (E, XL 6)) u (8 -I- 
f* 

F2 (E, XL (4) v &)I dE 
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u (t) are all possible summable functions satisfying the inequality J, (t*, oo) <;h,. 
Let D be some set from R. We denote 

D o,, t*) = {Pt = {t, a I v, x(4 4k’lt*\(t<t*} 
D (f*) = {{h v, 2 (s; $1 1 @xv a, VT x (s; z)) ED) 
Dfj = {{t, h, v, x (s; 6)) 1 {t, 1, v, 5 (s; T>} 63 D, x (0; 6) = x (0; z) 

2 (S; 6) = X (S; a) for almost all S E [- 6, 01) (6 E to, xl)] 

kf* = ({t, A, v, x (s; P)l 1 it, x (8; PI) E M, $J > 0, v > O}j 

Iv* = {it, h, v, x (s; w)} 1 {t, x (s; w)} E N, h > 0, v > 0) 

The sets VW) (t) C l?(l), to < t < 6, and w@(“) (tj C N* (t) are said to be 
u 4able if F’#“ (6) c 1M* (@) or WP) (8) = (ZI and for any t, E [to, 6)) 

t* E (t*, 63, P (8,) = (hi, vat s* (s; z)) E W@) (tJ and v(t) E (u f-); 

t 00; v*} either us (t*; Pt., u (9) n w(u) (3 + 8 or~~b~*, v (4 n 
2; (t*, t*> # 63 Here 0, (t*; Pt+, v (*))isthesectionofset a0 (pt,, y(e)) bythe 
hyperplane t = t* 
We introduce U* (pt,, p?‘, 6) and u* tit+, py., 6) (6 > 0) as the functions on which, 
respectively , t,+s 

;;‘p{ f b’.(t)dtl’*~jlu(t)l,‘dt~l’--*aj for h>h+, b#o 
. t. t* 

max i’s” C% (t) dt 1 “‘s” 11 v(t) 11” dt \< Y*2 - Y2) 
N.1 t, 

for v*>v, c+O 
1. 

are achieved. Here 

pt, = {t*, x, v, 2 (s; T)}, P?. = {t*, A*, v*9 x* (8; $1 

b = (5 (0; a) - x* (0; z))’ Fl (t*, 2 (8; a)) 

c = (5 (0; T) - 5* (0; 4)’ Fs (t*, x (s; T)) 

(the prime denotes transposition ). If h < h* or b = 0 (v* < v or c = 0), 
we assume 

II* (pt., pt.*, 6) = 0 (v” (Pfd pt.** 4 = 0) 

Let us define a procedure for the first player’s control with the guide for specified 
initial position pi, = {to, h [toI, Y [&,I, r. (8; ?)} and r.6 -stable sets w(“) (2), 

GJ< 1\( 6, JJVU) (&I) # @ l 
We take the element J)* [toI = {h*, v*, x* (s; 

z)}E W@) (ta) close& to p [t,] (for sirnp~~i~ we assume that such an element 
exists ; the general case is investigated by passing toaminimizing sequence as was done 
in [4,5 ] ), Let A be a covering of interval [to, Sl by a system ofhalf-open intervals 

hi, T~+J (i = 0, 1, . . ., 1 (A)) 

a0 = to, 71 = 4, fi+l- ^Ei = 6 = COXlSt 
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We aSSurne that in ]rO, ri) the motion of system (1.1) is generated by the constant con- 
trol u(O) 121 = u, (p*,, p ta*, 6) (r. < t < -cl) in pair with some realization u [21 E 
{u (e); i,, co; v [to]}. We then determine the position p=, = {rr, a ]ri], V [ri], 
LC [ri + S; r]} at instant r1 . Weselecttheguide’sposition p,,* from the condition 

p” [Ti] E IP) (G) n fJT(%; p+o*, v’“‘i*l) 

(v(O) ItI = u* (Pla, pto*, q, To < t < %) 

assuming that this intersection is not empty. We define the first player’s control on 

IQ, ‘GS) by the relation u(l) [iI = u* (ps,, p+,*, 6) (To\< t < TV). The position 

pa is realized as a result of the choice of control u(l) [tl and of some control 
u It] . We define the guide’s position at instant t = ~2 from the condition 

p” [%I E WU) (G) n GT (z2; PSI*, u(1) I * I) 

(u(l) ItI = v* (Pw p+>*, a), Tl< t < %) 

assuming once again that this intersection is not empty. If 

WCU)(r~+J fi G (Zi+i; pzi*, uCi) L-1) # 0 for all i=O,...,1--1 

we effect this procedure up to the instant t = 6. 
Let ‘tf be the instant when first 

I;v@) (zj) n 0, (‘tj; pTj_l, IN-~) [ * I) = 0 

Then M* (xi-17 zj) n (Jt~(P:+lt v(j -I) 1. ]) # 0. Hence an instant r* E ]Zj-1, Tjl 
exists when the guide’s position p+**= {T*, h,? v.+, 2 [.T, + 8; ~1) canbedetermined 
from the conditions 

ps** E G (PZj_,, d+-l) [ * I) 

{IL*, v*9 x It, + s; p.1) E M (z,) 

At instant t = Tj we take an arbitrary element from ‘~j X or (‘tj; ps**, u’-l [. 1) 
as the guide’s position prj* . Further, we define the controls uci) [t] and UCi) [t] 

(Ti < t < T~+~, j < i < I - 1) by the relations 

u(i) [t] = u* (Psi’ pzi*9 S), u(i) [t] = v* (PS{, j$*, 6) 

and we choose the guide’s position arbitrarily from the sets Tit1 X 07 (Ti+l; Pti*~ 
v(i) [ . I). The motion constructed of system (1.1) is denoted 

XA [t] = It‘ ]t; pto, US, u] 

US [tl = u(i) [tl, zi < t < zit1, i=o..., 1-I 

Function II: [tl, to < t < ‘s , is called a motion of system (1,l) if there exists a se - 
quence of furmtionS zAk [t] = x [t; pto(@), I.+ z+] Satisfying the conditions 

zAk ]t] -+ z [t] in c ([to, 81) 
(2.1) 

(ri+l (k) - ri (IE)) --f 0 
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Pi? - Pto as k-m 

Pi? = {to, @‘, vhk), xi”) (s; z)} 

It can be shown that this motion (we denote it z [t; ptP, w@)] ) exists. Without loss 
of generality we assume M @) -# @. 

Lemma 2.1. If u -stable sets IV(“) (t), to < 2 < 6, exist such that p [&,I 
E W(u) (t,) and W,(u) (fi) c $f* (e), then for any motion x [11 = z [2;pt,, bW)] 

we can find an instant t, E [2, - o + ‘t, 61 when first {t*, x [r, + s; ~1) E M, 
and {t, x [1 -t S; 01) E N for t E [to, t*l. 

We present the lemma’s proof, Let AL be a covering of interval [to, 61 by the 

intervals ‘ri (k)< t<Zi+l (k), i= 0, . . ., tp, 'to (k)= to, 'd!k = 6, lk = 1 (&I; let 

=Ak ttl = 5Ak ft; &Jk), u&k, %I be the phase vector of system (1.1) realized at in - 

stant t; let xZk [tl be the phase vector of the guide t whose motion was formed 

jointly with motion =Ak ItI; let nbk* [r] be the first player’s control whose action 

realizes motion =Ak* ftlq 
It can be verified that the equality 

m-1 (ifl)i 

lim 
U s 

IIcp(t)Udt s 
6 -to 

=o, c=-y-- 
lll-rm . ) 

a=0 g 

(2.2) 

is valid for any n -dimensional vector function q (r) E La [to, e] . Proceeding from 
the method of forming motions xAk it1 and xAlr* [tl, using (2.2 ) we establish the 
relation 

~_~max{llrk,iII, i=O, . . . . I,}=0 (2.3) 
1 

Here 
‘k, i = u zAk bi (k) + 5; T] - “zk [Zi (k) + s; t] II, + 

i f ixAkbdk)+s; T]--;k[Ti(k)+s; z]Ids+ 
j=l--5j 

ri(k) 

' @Ak h tk)] -":, b#)l)'( s 

+++k) 

JI(~, "z, [t + s]) uzk [E] dE _ 

'i(k) 

s 
'i-l(k) 

F2(t. xAk,[t + d)vk [E]dt 

The lemma’s validity follows from (2.3 1, 

Let Q* = {pt = {t, h, Y, x (s; 2)) 1 {t, x (.s; T)} E CD, h > 0, v > 0) 

P= {Pt = {t, h, v, x (s; z)} 1 (2, r (s; T)} E Y, h > 0, v > 0) 

where @ and ‘J’ are closed sets in E, X H,, satisfying the conditions (c > 0) 

@nM=@, qaanN=QI 
The sets W(“) (2) c R(i), to < 2 < 6, IV9 (t) c rD* (t), are said to be u - 

stable if for any 2, E [2,, +), t* E (t*, al,p (t*.) = {~*,v*.z* (a; 2)) E W(a) (t*) 
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and u (t) E (U (*); &, co; h,) either o+ (t*; Pt,, U (*))n l4’@‘~ (t*) 5 I?J 

or 05 @trt u (e)) il y* (&, 2*) # 0. 
We introduce u* (ot*, pt, *, 6) and Y+ (pt*, pr,*, 6) as the functions on which, 

respectively , 

are achieved. If h > h* or b = 0 (v* > Y or c = O), then we assume 

u* (Pt*t PI*“A) = 0 (v* (pt*, pt,*, 0) = 0). 
Let us define a procedure for the second player’s control with the guide for u -stable 

sets W@) (t), 1, < t < 6 . We form the second player’s control as follows: 

us [tl = vyi (psi, pTiB, 6) (Zi < t < %I, i = 0, . . ., 1 - 1) 

Here Psi is the game’s position and pTi * is the guide’s position realized at instant 
i! = ai. The controls 

ug* It] = u* (p,,, p$ 6) = u(i) [t], zi < t < z$+l 

are used to determine the guide’s positions. As the guide’s initial position pto* we 
select the element of set lo X w(O) (to) closest to pf, (once again we assume the 

existence of such an element). Next, we determine the positions pri* successively 
from the condition 

either up to the instant rz = 6 if all these intersections are nonempty or up to the 
instant “2 for which this intersection first is empty. The position pTj* at instant Tj 

is determined from the condition 

P‘~ [zjj E 0, (zj; p?,*, d-1) [ -1) 

wherep* kr*l E 0~ (Z*; P5_l, diml) [ * 1) n y* (T+.), Zj-I< ‘F* < pi_ The existence 
of such an element p7** follows from the inclusion p* [T~_~] E W(v) (T& and 

from the definition of u &ability of sets W@) (t). Next, as Psi* (j < i < 1) 

we choose arbitrary elements from the sets ‘Ci X 6 (‘Gi; pTi_i, z&-l) I* 1). 

By 2~ 121 = x 12; ~1st u, us] we denote the motion of system (1. X) , realized by 
the second-player’s control us [tl, 8, < d < 6 , in pair with some control u[tl E 

{u (*); 439 *; 3, f&J~ . By x [I; pta, IV@)] we denote the function 2 Itl, 

t, < t < 6 generated by the sequence of motions x+ [tl = 2 [t;ptJk), uk, us,1 
satisfying (2.1). 

Analogously to Lemma 2. I we can prove 

Lemma 2.2. If u -stable sets IS’(v) (t), to < t ;< 6 exist such that P[2,l 
E VP”) (to), then for any motion 2 [t] ==x It; pior W@)] the element (2,~ It -/- 
s; rl} remains in domain CI, up to instant 19 or up to the instant r+ when 

first {z*, 2 Iz, + 8; %I> Ez ‘y. 
Let I@*@) (2), t, ,< t Q 6, be a maximal u -stable system of sets. 



Existence of a saddle point in a game 19 

We denote T/v*(u) (t) = R(l) \ W*(v) (t). 

Theorem 2.1, Forany initialgameposition pto :either P [lo] E we(“) (te), 
and then the encounter problem has a solution which is provided bya procedure of con- 
trol with a guide defined for u -stable sets ‘c;v*t”) (t), to < t < 6, or 

we@) (to), and then the evasion problem has a solution, it being that 
p [toI @ 
p k!sl E 

W(O) (to), where IV”) (t), $0 \< t 68, are certain u - stable sets, and this solution 
is provided by a procedure of control with a guide, defined for the sets W(V) (t), 
to< t<0* 

The theorem can be proved along the plan of the proof of Theorem 3.3 in [2]. 

3, Let us assume that N = [to, @I x I$,, and that the first player measures the 
phase states of system (1.1) inaccurately. That is, at the instant t he knows the 
quantity 1~ [t + s; z] connected with the realization t [t + s; ‘~1 by the relation 

11 w It.-!- r; rl --st+s; rl flt\(a, 4\<d\<f), a=con&,0 

We define the motion t,, [t; pte, W(u)] similarly to motion x [t; pt., W(% The 
difference is that we equate the controls u(i) [t] and ZJ@) ifI when t E [q, I++~) 

u(Q [t] = 24, (p!$ p:,, S), 7m [t] = I?* (p$ pTi, 6) 

pt@) = (1, h itf, v ltl, z-9 Lt + s; xl} 

Lemma 3.1. Let closed u-stablesets WcU) (t) C A(‘), to < t <a, 
exist such that p It,] E WfW (to) and Wp(@ (@) C M* (@). Then, for any number 

E > 0 there exists a number CC > 0 such that for any motion to it; pt., W@)l we 
can find an instant t, E ito - o -k T, *Iwhen first {tyc, z [tl: + 8; p]} E ML. 

The lemma’s proof is analogous to that of Lemma 2.1. 
We note that when N = [to, 61 X Hop the condition 

ot h*t u (*)I n y* (t** 3 + 0 
should be dropped in the definition of the u -stability of sets WC”) (t), to < 1 < 6. 
If at instant t the second player also knows the quantity w It f s; 21, then we can 
define motion to 1 t; pior W(@] similarly to motion x it; pto, W@)j by setting 

us* It1 = u* (&! p***, 8), us [tl = u* ($A$ p*i*, 6) 

fOC t E tfi, Ti+l) 

Then there holds 
Lemma 3.2, Let Y-stable sets W@) (t), to < t < #k, and P Ital E W@J) 

(to) be specified. Numbers E > 0 and a0 > 0 exist such that the condition 

GJ [t + s; E”l Ejc iw ft), to - 0 + z < t < a 

is specified for the motions to [t; ptrr WC’)1 if a < a0 . 
Suppose that by choosing a control U’ It] the first player strives to minimize tne 

value of some continuous functional cp (2 (a; p)) at the instant 6 , while choosing 
a control u [r] the second player strives to maximize at instant 6 the value of 

cp (z (s; p)) on the trajectories of system (1.1). The functional Cp (X (s; p)) is 
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defined on space Hp. 
Relying on Theorem 2. I, just as in Cl] (see Sect. 18 t 97) we can validate 

Theorem 3.1, For any i~tial.~ition pto a number co, u -stable sets 
I%‘cW) (t), to 6 t < 6, and L? -stable sets W(v) (2), t, q__~ t \( 4 exist such 

that the relation 

The author thanks ILL S. Osipov for posing the problem and for valuable advice. 
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